SOUND-INSULATED FANS

Series VENTS KSB

Inline centrifugal fans in heat- and sound-insulated casing with air flow up to 2150 m³/h

Applications

KSB fan design enables its application in supply and exhaust ventilation systems for commercial, office and other public or industrial premises with high requirements to noise level and limited mounting space. Provision is made for installation in a premise above the suspended ceiling. Suitable for connection with 100, 125, 150, 160, 200, 250 and 315 mm round ducts.

Design

The fan casing is made of galvanized steel sheet and provided with heat- and sound-insulating material. Round connecting pipes are fitted with rubber seals.

Motor

The centrifugal impeller with backward curved blades is powered by means of 2-pole asynchronous motor with external rotor. The motors are equipped with built-in thermal overheating protection with automatic restart. Motor ball bearings with selective lubricating oil ensure low-noise and maintenance-free fan operation. The motor is installed onto the rubber anti-vibration mounts to reduce vibration and noise. Models marked KSB...S are featured with the high-powered motors.

Speed control

Smooth or step speed control with a thyristor or autotransformer speed controller. Several fans may be connected to one speed controller provided that the total power and operating current do not exceed the rated speed controller parameters.

Mounting

The fans are designed for inline mounting inside an air duct of matching air duct diameter, in any point of the ventilation system and at any angle. The fan shall be fixed to a building by means of supports, suspension brackets or fixation brackets in case of flexible connectors application. The fan can be mounted in any position with respect to the air flow direction indicated with a pointer on the fan casing. Access to the fan maintenance shall be provided.

The fan with electronic temperature and control module (U option).

The ideal solution for ventilation of the premises requiring permanent temperature control, i.e. greenhouses. The fan with the electronic temperature and speed control module provides automatic control of the motor speed (air flow) depending on air temperature in the air duct or in the room.

The front panel of the electronic module has the following control knobs:

- speed control knob for setting the motor speed;

- thermostat control knob for setting the temperature set point;

- thermostat indicator light.

The fan is available in two modifications:

- with the temperature sensor integrated inside the fan air duct (U/U1 option);

- with the external temperature sensor fixed on the cable, 4 m long (Un/U1n/U2n).

Designation key

J									
Series	Spigot d	liameter			0	ptions			
VENTS KSB	100; 125; 200; 25	150; 160; 50; 315	S: high-powered U: speed contro	oller with an ele			a temperatu	re sensor int	tegrated inside
			an air duct. Tem Un: speed contr 4-meter cable. T U1: speed contr inside an air duc U1n: speed con 4-meter cable. T U2n: speed con 4-meter cable. T R1: power cord P: integrated sm	oller with an el emperature-ba roller with an el ct. Timer-based troller with an imer-based op troller with an emperature-ba with a mains p	lectronic them ased operation lectronic them l operation log electronic them eration logic. electronic them ased switching lug.	nostat and nostat and nostat and gic. rmostat an	d a temperat nd a tempera	ure sensor in ature sensor	ntegrated fixed on a
			Acces	sories —					
0				ER		VENTR	a.	· · ·	° C
Silencer	Filters	Heaters	Backdraft damper	Air shutter		Speed c	ontrollers		Sensor

Control logic of the fan with the electronic temperature and speed control module.

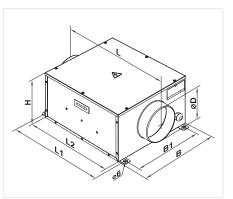
Set the desired air temperature (thermostat set point) by turning the thermostat control knob. Set the required minimum impeller speed (air flow) by turning the speed control knob. The motor switches to maximum speed (maximum air flow) as the temperature reaches and exceeds the set temperature set point. The motor switches to the pre-set lower speed as the temperature drops down below the temperature set point. To avoid frequent motor speed switches when the air temperature in the duct is equal to the set temperature point, the speed switch delay is activated. There are three switch delay patterns for various cases:

1. The temperature sensor-based switch delay (U option): the motor switches to higher speed as the air temperature exceeds 2 °C above the set thermostat set

point. The motor revers to the preset lower speed as the air temperature drops below the thermostat set point. This pattern is used to keep air temperature to within 2 °C. In this case the motor speed switches are rare.

2. The timer-based switch delay (U1 option): as the air temperature exceeds the set thermostat set point, the motor switches to higher speed and the switch delay timer is activated for 5 min. The motor reverts to lower speed as the air temperature drops down below the thermostat set point and only after 5 minuts timer countdown. This pattern is used for exact air temperature control. The speed switches for the fan with U1 option are more frequent as compared to the operating logic of the fan with U option, however the minimum operating cycle at one speed is 5 minutes.

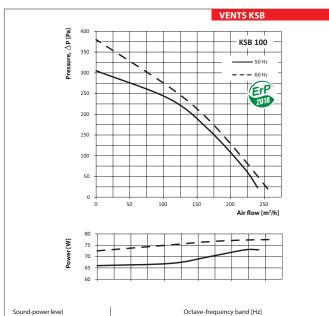
3. Switching ON/OFF by a temperature sensor (U2 option): when the air temperature exceeds by


 $2 \,^{\circ}$ C the thermostat actuation set point, the fan starts operating at the set speed. The fan switches off when the temperature drops below the temperature set point.

Example for temperature sensor delay:	motor operates with the motor speed =60 $\%$
Initial conditions:	▼
 rated speed is set as 60 % of the maximum speed 	 the temperature in the duct rises, reaches 25 °C and keeps rising
 operating threshold is set as 25 °C 	
 air temperature in the duct is 20 °C 	fan switches to the maximum speed =100 % and the delay timer switches for
	5 minutes on
Fan operates with the rated speed =60 $\%$	
▼	 the temperature in the duct goes down
 air temperature in the duct rises 	the fan operates with the maximum speed =100 %
fan operates with the rated speed =60 $\%$	
▼	\cdot the temperature in the duct reaches 25 °C and keeps going dow
 air temperature in the duct reaches 27 °C 	
Fan switches to the speed $=100\%$	after the timer stops, the motor switches to the preset rate
\checkmark	speed (=60 %). After the speed switch the timer switches again fo
 air temperature in the duct goes down 	5 minutes on.
fan operates with the speed $=100$ %	\checkmark
\checkmark	 the temperature in the duct rises, reaches 25 °C and keeps rising
 temperature in the duct reaches 25 °C again 	
fan switches to the preset rated speed =60 $\%$	after the timer stops, the motor switches to the maximum speed (=100 $\%$
	After the speed switch the timer switches again for 5 minutes on.
Example for timer delay:	
Initial conditions:	Thus, in timer delay pattern the delay timer activates every time the fa
 set rotation speed = 60 % of maximum speed 	speed changes.
 set operating threshold =25 °C 	

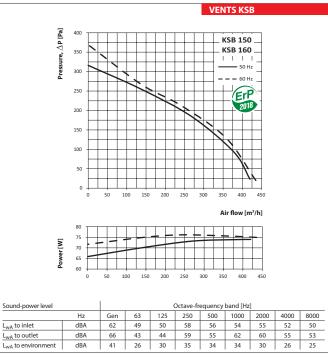
• air temperature in the duct =20 °C

Fan overall dimensions


Dimensions [mm] Mass [kg] Туре ØD В L1 L2 B1 Н L KSB 100 99 322 280 380 350 192 447 5.4 KSB 125 124 322 280 192 447 380 350 5.4 KSB 150 149 352 310 212 477 410 380 6.4 KSB 160 410 159 352 310 212 477 380 6.4 KSB 200 199 432 368 287 588 506 480 10.0 KSB 200 S 199 432 368 287 588 506 480 12.0 KSB 250 249 432 368 287 588 506 480 12.5 KSB 315 314 502 648 566 438 397 540 15.5

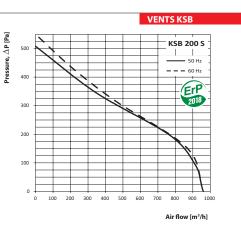
SOUND-INSULATED FANS

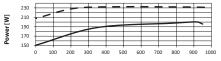
Technical data


	KSB 100		KSB	KSB 125		KSB 150		160	
Voltage [V]	1~230		1~:	1~230		1~230		230	
Frequency [Hz]	50	60	50	60	50	60	50	60	
Power [W]	73	77	73	77	72	76	75	76	
Current [A]	0.32	0.34	0.32	0.34	0.32	0.33	0.33	0.33	
Max. air flow [m ³ /h]	240	255	330	345	420	435	420	435	
RPM [min ⁻¹]	2560	2690	2590	2700	2600	2720	2690	2720	
Noise level at 3 m [dBA]	33	34	35	36	36	37	36	37	
Transported air temperature [°C]	-25	.+55	-25	-25+55		-25+55		-25+55	
SEC class	(2	(С	С		С		
Protection rating	IP:	X4	IP	IPX4		(4	IPX4		

VENTS KS	5B
	T]
Image: Constraint of the second sec	5 —
ġ 330 X 50	Hz
So 300 60	Hz —
250 EI	1P 118
200	—
150	
100	
50	<u>k</u>
o	
0 50 100 150 200 250 300	350
Air flow [n³/h]
	_
	-
	<u> </u>
60 60 60 100 150 200 250 300	350

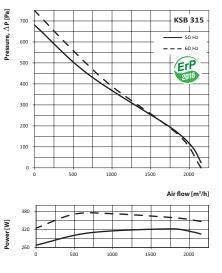

Sound-power level					Octave-fr	equency	band [Hz]		
	Hz	Gen	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dBA	59	53	57	54	52	51	54	51	47
L _{wA} to outlet	dBA	68	49	50	53	56	66	63	56	54
L _{wA} to environment	dBA	40	27	29	32	31	34	29	29	20


Sound-power level		Octave-frequency band [Hz]										
	Gen	63	125	250	500	1000	2000	4000	8000			
L _{wA} to inlet	dBA	64	51	51	54	56	54	55	53	51		
L _{wA} to outlet	dBA	65	50	49	59	55	61	61	58	51		
L _{wA} to environment	dBA	38	29	32	33	33	33	31	28	25		



Technical data

	KSB 200		KSB 2	KSB 200 S		KSB 250		315	
Voltage [V]	1~230		1~2	1~230		1~230		230	
Frequency [Hz]	50	60	50	60	50	60	50	60	
Power [W]	103	122	195	232	198	238	322	367	
Current [A]	0.45	0.53	0.85	1,02	0.87	1,04	1.4	1.6	
Max. air flow [m³/h]	730	750	950	960	1300	1315	2150	2150	
RPM [min ⁻¹]	2550	2740	2570	2690	2420	2730	2670	2850	
Noise level at 3 m [dBA]	38	39	41	42	41	43	43	44	
Transported air temperature [°C]	-25	+55	-25	-25+55		-25+55		-25+55	
SEC class	I	В	E	3	-			-	
Protection rating	IP	X4	IPX	X4	IPX4		IPX4		



Sound-power level		Octave-frequency band [Hz]								
	Hz	Gen	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dBA	53	41	43	53	51	47	44	44	36
L _{wA} to outlet	dBA	70	48	49	57	68	65	63	58	51
L _{wA} to environment	dBA	45	29	32	37	40	27	29	26	27

VENTS KSB

Sound-power level		Octave-frequency band [Hz]									
	Gen	63	125	250	500	1000	2000	4000	8000		
L _{wA} to inlet	dBA	59	45	47	56	47	48	50	44	40	
L _{wA} to outlet	dBA	75	52	51	59	68	68	65	62	54	
L _{wA} to environment	dBA	48	41	41	44	43	36	28	32	29	